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Abstract. Using the method which retains the rotation symmetry of spin components in the paramagnetic
state and has no preset magnetic ordering, spectral and magnetic properties of the two-dimensional t-J
model in the normal state are investigated for the ranges of hole concentrations 0 ≤ x ≤ 0.16 and tem-
peratures 0.01t ≤ T ≤ 0.2t. The used hopping t and exchange J parameters of the model correspond to
hole-doped cuprates. The obtained solutions are homogeneous which indicates that stripes and other types
of phase separation are not connected with the strong electron correlations described by the model. A series
of nearly equidistant maxima in the hole spectral function calculated for low T and x is connected with
hole vibrations in the region of the perturbed short-range antiferromagnetic order. The hole spectrum has a
pseudogap in the vicinity of (0, π) and (π, 0). For x ≈ 0.05 the shape of the hole Fermi surface is transformed
from four small ellipses around (±π/2,±π/2) to two large rhombuses centered at (0, 0) and (π, π). The
calculated temperature and concentration dependencies of the spin correlation length and the magnetic
susceptibility are close to those observed in cuprate perovskites. These results offer explanations for the
observed scaling of the static uniform susceptibility and for the changes in the spin-lattice relaxation and
spin-echo decay rates in terms of the temperature and doping variations in the spin excitation spectrum
of the model.

PACS. 71.10.Fd Lattice fermion models – 74.25.Ha Magnetic properties – 74.25.Jb Electronic structure

1 Introduction

The two-dimensional t-J model was proposed by
Anderson [1] for the description of strong electron cor-
relations in CuO2 planes of perovskite high-Tc supercon-
ductors. In reference [2] the similarity of the low-energy
part of its spectrum with the spectrum of the realistic
three-band Hubbard model was demonstrated. Nowadays
the t-J model is one of the most frequently used models
for the interpretation of experimental results in cuprates
(for a review, see Ref. [3]). Different numerical and analyt-
ical methods were used for the investigation of the model.
Among these methods are the exact diagonalization of
small clusters [4,5], Monte Carlo simulations [6], den-
sity matrix renormalization group calculations [7], spin-
wave [8,9] and mean-field slave-boson approximations [10].
In spite of the considerable progress made towards the un-
derstanding of the properties of the model, the basic issues
of its behavior at moderate doping have not yet been com-
pletely resolved.
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Aiming at a description for this range of concentration
in reference [11] a new analytical method was developed
which has merits of retaining the rotation symmetry of
spin components in the paramagnetic state and of the ab-
sence of any preset magnetic ordering. Since the descrip-
tion is carried out in terms of the Hubbard operators,
the method takes proper account of the kinematic inter-
action. The method is based on Mori’s projection opera-
tor technique [12] which allows one to represent Green’s
functions in the form of continued fractions and gives a
way for calculating their elements. The residual term of
the fraction is approximated by the decoupling which re-
duces this many-particle Green’s function to a product of
the sought-for functions. Using the idea of reference [13]
the decoupling is corrected by introducing a vertex cor-
rection, a multiplier which is determined from the sum
rule of the considered problem, the constraint of zero site
magnetization in the paramagnetic state. Test calculations
with this method for small clusters and high temperatures
demonstrated good agreement of the obtained results with
the exact diagonalization and Monte Carlo data. Notice
that close approaches which use equations of motion and
Tserkovnikov’s formalism were developed in reference [14]
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to consider magnetic properties of the 2D t-J model.
This article contains results of calculations carried out

with the method of reference [11] for a 20×20 lattice and
parameters J = 0.1 eV, t = 0.5 eV where J and t are the
exchange and hopping constants of the t-J model. Test cal-
culations with lattices of other sizes showed that the con-
sidered lattice is large enough to avoid finite-size effects in
spectral functions. The parameters chosen correspond to
hole-doped cuprate perovskites [15]. The considered range
of hole concentrations 0 ≤ x ≤ 0.16 spans the cases from
light to moderate doping. The temperature range of the
calculations 0.01t ≈ 58 K ≤ T ≤ 0.2t ≈ 1200 K embraces
the range of temperatures used in experiment.

The calculated Green’s functions reveal a number of
peculiarities in the hole and spin excitation spectrum. For
low x and T , besides the spin-polaron peak [3], a series of
less intensive and broader maxima is observed at higher
frequencies in the hole spectral function. These maxima
are nearly equidistant which allows us to connect them
with vibrations of a hole in a region of the perturbed short-
range antiferromagnetic order. This region arises due to
the hole movement. The lowest of these maxima with a
dispersion which mimics the dispersion of the spin-polaron
peak is apparently observed in lightly doped Ca2CuO2Cl2.
For low hole concentrations only the spin-polaron band
crosses the Fermi level which leads to the Fermi sur-
face consisting of four ellipses around (±π/2,±π/2). For
x ≈ 0.05 the second band, which arises below the Fermi
level in the used hole picture, crosses the Fermi level and
the Fermi surface acquires new elements – large rhombuses
around (0, 0) and (π, π). However, due to the peculiar
dispersion of the spin-polaron band and its larger spec-
tral intensity parts of this large Fermi surface near (0, π)
and (π, 0) are hidden which looks like a pseudogap, a de-
crease of the low-frequency spectral intensity in these re-
gions of the Brillouin zone. The magnitude of the pseudo-
gap – the energy distance between the spin-polaron peak
and the Fermi level – decreases with x and at x ≈ 0.12
the pseudogap disappears. The symmetry, magnitude and
concentration dependence of the calculated pseudogap are
similar to those observed in Bi-based cuprates.

As mentioned, the method used has no preset magnetic
ordering which opens the way to investigate whether the
strong electron correlations described by the t-J model are
responsible for the charge and magnetic inhomogeneities
observed in some cuprates [16]. In the considered ranges
of hole concentrations and temperatures only the homo-
geneous solutions were found which indicates that other
interactions have to be invoked to explain these inhomo-
geneities.

The calculated spectrum of spin excitations con-
tains a gap near (π, π) which is directly connected with
the correlation length of the short-range antiferromag-
netic order. The dependence of the correlation length
on x reproduces the relation observed experimentally in
La2−xSrxCuO4 [17]. With increasing x the branch of spin
excitations is destroyed near (0, 0), whereas at the periph-
ery of the Brillouin zone the excitations remain well de-
fined. The calculated magnetic susceptibility and its de-

pendencies on x and T are similar to those observed in
neutron scattering and NMR experiments. This similarity
allows us to offer explanations for the observed scaling of
the static uniform susceptibility and for the changes in the
spin-lattice relaxation and spin-echo decay rates in terms
of the temperature and doping variations in the spin ex-
citation spectrum of the t-J model.

For convenience main formulas of reference [11], which
were used in the calculations, are reproduced in Section 2.
In Sections 3 and 4 peculiarities of the hole and spin
excitation spectra are discussed. The spin susceptibility,
spin correlations, spin-lattice relaxation and spin-echo de-
cay rates are considered in Section 5. Our conclusions are
given in Section 6.

2 Main formulas

The Hamiltonian of the 2D t-J model reads [3]

H =
∑
nmσ

tnma†
nσamσ +

1
2

∑
nm

Jnm

(
sz
nsz

m + s+1
n s−1

m

)
, (1)

where anσ = |nσ〉〈n0| is the hole annihilation operator,
n and m label sites of the square lattice, σ = ±1 is the
spin projection, |nσ〉 and |n0〉 are site states correspond-
ing to the absence and presence of a hole on the site.
These states may be considered as linear combinations of
the products of the 3dx2−y2 copper and 2pσ oxygen or-
bitals of the extended Hubbard model [8,18]. In this work
we take into account nearest neighbor interactions only,
tnm = −t

∑
a δn,m+a and Jnm = J

∑
a δn,m+a where the

four vectors a connect nearest neighbor sites. The spin-
1
2 operators can be written as sz

n = 1
2

∑
σ σ|nσ〉〈nσ| and

sσ
n = |nσ〉〈n,−σ|.

Due to the complicated commutation relations the di-
agram technique for the operators anσ, sz

n, and sσ
n is

very intricate [19]. In this case the use of Mori’s pro-
jection operator technique [12] for the derivation of self-
energy equations for Green’s functions constructed from
such operators is especially fruitful. In this way the
following equations were found for the hole G(kt) =
〈〈akσ|a†

kσ〉〉 = −iθ(t)〈{akσ(t), a†
kσ}〉 and spin D(kt) =

−iθ(t)〈[sz
k(t), sz

−k]〉 Green’s functions [11]:

D(kω)=
[4Jα(∆ + 1+γk)]−1Π(kω)+4JC1(γk−1)

ω2 − Π(kω) − ω2
k

, (2)

G(kω) = φ[ω − εk + µ − Σ(kω)]−1,

where D(kω) =
∫ ∞
−∞ exp(iωt)D(kt)dt,

akσ = N−1/2
∑
n

exp(−ikn)anσ,

sz
k = N−1/2

∑
n

exp(−ikn)sz
n,

akσ(t) = exp(iHt)akσ exp(−iHt), N is the number of
sites, H = H − µ

∑
n Xn, µ is the chemical potential,
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Xn = |n0〉〈n0|, the angular brackets denote
averaging over the grand canonical ensemble,
γk = 1

4

∑
a exp(ika), φ = 1

2 (1 + x), and

ω2
k = 16J2α|C1|(1 − γk)(∆ + 1 + γk), (3)

εk = −(4φt + 6C1φ
−1t + 3F1φ

−1J)γk.

In the present calculations the parameter of vertex cor-
rection α, which improves the decoupling in the resid-
ual term, is set equal to its value in the undoped case,
α = 1.802 (this value differs slightly from that reported
in references [11,20] due to an artificial broadening intro-
duced in D(kω), see below). The parameter ∆ which de-
scribes a gap in the spectrum of spin excitations at (π, π)
(see Eq. (3)) is determined by the constraint of zero site
magnetization 〈sz

l 〉 = 0 in the paramagnetic state. The
constraint can be written in the form

1
2
(1 − x) =

2
N

∑
k

∫ ∞

0

dω coth
( ω

2T

)
B(kω), (4)

where B(kω) = −π−1Im D(kω) is the spin spectral func-
tion. Notice that in accord with the Mermin-Wagner the-
orem [21] in the considered 2D system the long-range an-
tiferromagnetic ordering is destroyed at any nonzero T
and, as will be seen below, for T = 0 and x > xc ≈ 0.02.
The value of x and the nearest neighbor correlations
C1 = 〈s+1

l s−1
l+a〉 and F1 = 〈a†

l al+a〉 are connected with
Green’s functions (2) by the following relations:

x =
1
N

∑
k

∫ ∞

−∞
dωnF (ω)A(kω),

F1 =
1
N

∑
k

γk

∫ ∞

−∞
dωnF (ω)A(kω), (5)

C1 =
2
N

∑
k

γk

∫ ∞

0

dω coth
( ω

2T

)
B(kω),

where A(kω) = −π−1Im G(kω) is the hole spectral func-
tions and nF (ω) = [exp(ω/T ) + 1]−1.

The self-energies in equation (2) read

Im Π(kω) =
16πt2J

N
(∆ + 1 + γk)

∑
k′

(γk − γk+k′)2

×
∫ ∞

−∞
dω′ [nF (ω + ω′) − nF (ω′)]

×A(k + k′, ω + ω′)A(k′ω′),

Im Σ(kω) =
16πt2

Nφ

∑
k′

∫ ∞

−∞
dω′

[
γk−k′ + γk (6)

+sgn(ω′)(γk−k′ − γk)
√

1 + γk′

1 − γk′

]2

×[nB(−ω′) + nF (ω − ω′)]
×A(k − k′, ω − ω′)B(k′ω′),

where nB(ω) = [exp(ω/T )− 1]−1. The source of damping
of spin excitations described by equation (6) is the decay

into two fermions. Another source of damping, multiple
spin excitation scattering, is considered phenomenolog-
ically by adding the small artificial broadening −2ηωk,
η = 0.02t to ImΠ(kω). The broadening −η is also added
to ImΣ(kω) to widen narrow lines and to stabilize the
iteration procedure.

The same derivation for the transversal spin Green’s
function gives 〈〈s−1

k

∣∣s+1
k 〉〉 = 2D(kt) indicating that the

used approach retains properly the rotation symmetry of
spin components in the paramagnetic state.

For low hole concentrations and temperatures the
bandwidth of the dispersion εk, equation (3), is approxi-
mately equal to t which is much smaller than 8t, the band-
width of uncorrelated electrons. The reason for this band
narrowing is the antiferromagnetic alignment of spins. In
this case the hole movement is accompanied by the spin
flipping. In these conditions the hole dispersion is deter-
mined by the self-energy Σ(kω) which is responsible for
a considerable energy gain for states in the spin-polaron
band. For the parameters used this gain is approximately
equal to 2t.

3 The hole spectrum

Equations (2–6) form a closed set which was solved by iter-
ation. Examples of the hole spectral functions for the cases
of low and moderate doping are given in Figures 1 and 2.
The frequency is measured from the chemical potential.
For low x the shapes of the spectra are close to those ob-
tained in the spin-wave approximation [8]. As seen from
Figure 1, at low doping the hole spectral function contains
a series of nearly equidistant maxima. The first member
of this series is the narrow peak with the highest intensity
which is frequently termed the spin-polaron peak (in some
of the spectra in Figures 1 and 2 only its foot is shown).
The dispersion of the maxima in the above spectra along
the symmetry directions is shown in Figure 3. In the spin-
polaron band the lowest energy is reached at (π/2, π/2).
The nearly equidistant location of the maxima is clearly
seen in Figure 3a. Besides, we notice that the second max-
imum in the series has a dispersion which is close in shape
to the dispersion of the spin-polaron peak. As follows from
Figures 2 and 3b, this maximum is retained at moderate
doping in some region of the Brillouin zone.

The nearly equidistant position of the maxima in
the low-concentration spectra allows us to connect them
with vibronic states of a hole in the region of the per-
turbed short-range antiferromagnetic order. The moving
hole leaves behind it a trace of overturned spins. Such
disturbance requires energy which in its turn leads to a
restoring force acting on the hole and giving rise to its
vibrations. This notion is close to the string picture de-
veloped in references [22] for the Ising model and used for
the interpretation of the fine spectral structure in the t-J
model on small lattices [3,4].

The two lowest maxima of the above-mentioned
series are apparently observed in lightly doped
Ca2CuO2Cl2 [23]. The narrow and intensive spin-polaron
peak is responsible for the photoemission maximum with



206 The European Physical Journal B

Fig. 1. The hole spectral function A(kω) along the symmetry
lines for x = 0.012, T = 0.02t and J/t = 0.2. The respective
values of the wave vectors are indicated near the curves. Here
and below the hole picture is used. The vertical dotted line
indicates the position of the chemical potential.

the lowest binding energy, while the second member of
the series corresponds to the spectral maximum which
is observed at approximately 600 meV higher binding
energy. This energy difference is close to that shown in
Figure 3a. Besides, as noted in reference [23], the disper-
sion of the second maximum mimics the dispersion of the
spin-polaron peak, which conforms with our calculations.

Fig. 2. The hole spectral function for x = 0.12 and T = 0.02t.

However, it should be noted that our calculated dispersion
of the spin-polaron band differs somewhat from that
observed experimentally in lightly doped cuprates [23,24].
Although the shapes and magnitudes of the experimental
and calculated dispersions along the nodal direction
(from (0, 0) to (π, π)) are close, along the boundary of the
magnetic Brillouin zone (from (0, π) to (π, 0)) the magni-
tude of the calculated dispersion is an order of magnitude
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Fig. 3. The dispersion of the maxima in the hole spectral func-
tion for T = 0.02t, x = 0.012 (a) and x = 0.12 (b). Points Y ,
M and S correspond to k = (0, π), (π, π) and (π/2, π/2), re-
spectively.

smaller than the experimental one. A possible reason for
this discrepancy is the oversimplified hole hopping term
in Hamiltonian (1) which takes into account the transfer
between nearest neighbor sites only [23,25].

The spectral intensity below the chemical potential in
Figures 1 and 3a is noteworthy. Already at low x in some
region of the Brillouin zone this spectral feature looks
like a weak maximum. It is this spectral intensity which
provides a finite hole concentration until the spin-polaron
band crosses the Fermi level at x ≈ 0.04.

With increasing x and T the high-frequency maxima
in the nearly equidistant series are smeared, as seen in
Figure 2. Inspecting this figure one can see that for mod-
erate hole concentrations two maxima – the spin-polaron
peak and a less intensive and broader maximum – cross
the Fermi level. This latter maximum originates from the
mentioned spectral feature which appears below the chem-
ical potential at low x. The dispersions of the two max-
ima and some other spectral peculiarities are shown in
Figure 3b. The maxima can be resolved in the spectrum
only in some regions of the Brillouin zone. This is the rea-
son why the curves in Figure 3b terminate at some points
of the symmetry lines.

The evolution of the Fermi surface with doping is
shown in Figure 4. No Fermi surface exists for x � 0.04,
since no maximum which can be identified with a quasi-

Fig. 4. The Fermi surface in the first quadrant of the Brillouin
zone for x = 0.043, 0.08, and 0.12. T = 0.02t.

particle excitation crosses the Fermi level (see Figs. 1
and 3a). As indicated above, for such x the occupied hole
states are located at some distance from the level. At
x ≈ 0.04 the spin-polaron band crosses the Fermi level
near (±π/2,±π/2) which produces a Fermi surface con-
sisting of four strongly elongated ellipses around these
points. In Figure 4 the transverse size of one of these
ellipses is much smaller than the used momentum step
and therefore the ellipse is depicted as a line segment. At
x ≈ 0.05 the second band crosses the Fermi level. With
this crossing the Fermi surface acquires new elements –
in addition to the ellipses of the spin-polaron band there
appear two large rhombuses centered at (0, 0) and (π, π)
(see Fig. 4, the case x = 0.08). One of these rhombuses
can be considered as a shadow image of the other, which
arises due to the antiferromagnetic short-range order. No-
tice, however, that the rhombuses are slightly different
in size. In such a manner the small Fermi surface which
exists for x � 0.05 is transformed to the large surface
for larger hole concentrations. With a further increase
of x the Fermi level moves up from the bottom of the
spin-polaron band, the size of the ellipses grows and their
shape is somewhat changed. At x ≈ 0.12 they reach the
boundaries of the Brillouin zone and the parts of the Fermi
surface connected with the spin-polaron band are trans-
formed into two rhombuses the shapes and sizes of which
are close to those connected with the second band. Thus,
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Fig. 5. The normalized hole density of states.

for x � 0.12 the Fermi surface consists of two rhombuses
centered at (0, 0) and (π, π) (see Fig. 4).

The compound Bi2Sr2CaCu2O8+δ is most intensively
investigated in angle-resolved photoemission experiments.
However, even for this crystal the Fermi surface topology
is a topic of an intense controversy (see, e.g., Ref. [26] and
references therein). The main reasons for this are broad
spectral features in underdoped normal-state crystals and
the weak dispersion around (π, 0) (the so called flat bands
or extended van Hove singularities, see Fig. 3b). We notice
also that for moderate doping the spin-polaron band in all
the area between the rhombuses lies less than 20 meV be-
low the Fermi level. This energy is on the verge of accuracy
of photoemission experiments. Nevertheless in the variety
of experimental results on the Fermi surface of normal-
state cuprates it is possible to find some features which
resemble those shown in Figure 4. The shadow Fermi
surfaces (together with some other replicas of the main
Fermi surface) are observed in Bi2Sr2CaCu2O8+δ [26,27].
In some experimental conditions in this crystal and in
La2−xSrxCuO4 the shapes of experimental Fermi sur-
faces [28,29] are close to that shown in Figure 4 for
x = 0.12. Notice however that in reference [29] such shape
of the Fermi surface in La2−xSrxCuO4 is ascribed to dy-
namic stripes presumed in this crystal.

As indicated, in the range 0.05 � x � 0.12 the Fermi
surface contains parts arising due to the crossings of the
Fermi level by two different bands. The spectral maxima
corresponding to these bands differ essentially in their
intensity. In comparison with the spin-polaron peak the
spectral maximum of the second band is weaker and bro-
ader (see Fig. 2). As a consequence, for wave vectors
near (0, π) and (π, 0) this maximum is lost to the foot of
the spin-polaron peak on crossing the Fermi level. Since
the spin-polaron band lies somewhat above the Fermi level
in this region of the Brillouin zone, the situation looks
like a part of the Fermi surface disappears here and a
gap opens between the hole energy band and the Fermi
level [8,30]. In its size (∼20 meV) and symmetry this gap is
similar to the pseudogap observed in photoemission spec-
tra. The gap disappears at x ≈ 0.12 when the whole Fermi

Fig. 6. The spin spectral functions for k = (0, π) and (π, π).

surface stems from the crossing of the spin-polaron band
with the Fermi level.

The normalized hole density of states,

ρ(ω) = N−1
∑
k

A(kω),

is shown in Figure 5 for three hole concentrations from
the extremely low to the moderate doping case. As seen
from the figure, a considerable part of the density of states
is concentrated at a maximum which persists near the
Fermi level in a wide range of hole concentrations. This
maximum is produced by the above-mentioned extended
van Hove singularities in the spin-polaron band and plays
a great role in the superconductive transition in the t-J
model [31].

4 The spectrum of spin excitations

Typical shapes of the spin spectral function B(kω) are
shown in Figure 6. For low and moderate x the spectrum
consists of a maximum with an extended high-frequency
tail. Some fine structure can be observed for certain wave
vectors which is connected with the frequency dependence
of the polarization operator (6).
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Fig. 7. The dispersion of spin excitations. Vertical bars show
decay widths |ImΠ(kω)|/(2ωk). The notations of the symme-
try points are the same as in Figure 3.

The increases of the temperature and the hole con-
centration act in a similar manner on the spectrum. This
action is different in the nearest vicinity of (π, π) and in
the remainder of the Brillouin zone. As seen from Figure 6,
in the latter case with increasing x (and T ) the maximum
in B(kω) is shifted to lower frequencies and loses its inten-
sity, while in the former case the frequency of the max-
imum, on the contrary, grows. This frequency growth is
connected with the gap in the spin excitation spectrum at
(π, π). The magnitude of this gap grows with increasing x
and T .

As follows from equation (2), the frequencies of spin
excitations satisfy the equation

ω2 − ReΠ(kω) − ω2
k = 0. (7)

Their dispersion along the symmetry lines is shown in
Figure 7 for different x and T . In this figure vertical
bars depict the decay widths |ImΠ(kω)|/(2ωk) of the ex-
citations, the imaginary parts of the respective poles in
Green’s function. As seen from Figure 7a, for low x and T
the dispersion of spin excitations is close to the dispersion
of spin waves. The main difference is the above-mentioned
spin gap at (π, π). In an infinite crystal the magnitude of
this gap is directly connected with the spin correlation
length ξ. Indeed, using equation (2) and taking into ac-
count that the region near (π, π) gives the main contribu-
tion to the summation over k, we find for large distances
and low temperatures

〈sz
l s

z
0〉 = N−1

∑
k

eikl

∫ ∞

0

dω coth
( ω

2T

)
B(kω)

∝ eiQl(ξ/|l|)1/2e−|l|/ξ, (8)

ξ =
a

2
√

∆
,

Fig. 8. The real part of the polarization operator ReΠ(kω)
for k = (0, 0.1π), x = 0.12 and various temperatures.

where Q = (π, π) and a is the intersite distance (in
the considered temperature and hole concentration ranges
ω2

Q � |Re Π(Q, ωQ)|; therefore in the above equation the
gap magnitude is approximated by ωQ). For low x we
found ∆ ≈ 0.2x and consequently

ξ ≈ a√
x
·

This relation between the spin correlation length and the
hole concentration has been experimentally observed in
La2−xSrxCuO4 [17].

With growing x the spin excitation branch is destroyed
in some region around the Γ point – for such momenta
equation (7) has no real solution due to a negative value
of Re Π(kω). In Figure 7 this peculiarity is reflected in the
rupture of the dispersion branch in this region where ex-
citation frequencies are purely imaginary. Thus, much like
the Heisenberg model [32,33], properties of elementary ex-
citations near (0, 0) and (π, π) are different: in the former
region the excitations are overdamped, while in the lat-
ter they are gapped. With rise of temperature the branch
are partly restored around (0, 0). The explanation for such
behavior follows from Figure 8. For low temperatures and
long wavelengths Re Π(kω) has a pronounced dip at low
frequencies. This dip is connected with the spin-polaron
band and is responsible for the lack of real solutions in
equation (7). With increasing T the spin-polaron peaks
are smeared, the depth of the dip in Figure 8 becomes
smaller and equation (7) has again real solutions.

5 Magnetic properties

As already mentioned, in accord with the Mermin-Wagner
theorem [21] the considered 2D system is in the param-
agnetic state for T > 0. This result can also be obtained
using equations of Section 2. Numerical calculations and
the analysis of experimental data presented strong evi-
dence that the 2D nearest-neighbor s = 1

2 Heisenberg an-
tiferromagnet has long-range order at T = 0 [33]. Let us
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Fig. 9. (a) Spin correlations vs. x for T = 0.02t. (b) Spin
correlations along the diagonal of the crystal (i.e. l = (m, m))
for x = 0.12. The respective temperatures are indicated near
the curves.

consider an infinite crystal at T = 0 and find the hole con-
centration xc which destroys this ordering. Notice that the
indication of the long-range order is a finite value of the
condensation parameter C which is determined from con-
straint (4) and the condition ∆ = 0,

C =
1
2
(1 − x) −

√
|C1|
α

1
N

∑
k �=Q

√
1 − γk

1 + γk
, N → ∞. (9)

As seen from equations (4) and (9),

C =

√
2|C1|

α
lim

N→∞
1

N
√

∆
·

As follows from equation (8), the sublattice magnetiza-
tion M = (lim|l|→∞ |〈sl · s0〉|)1/2 is connected with the
condensation parameter by the relation M = (3C/2)1/2.
To estimate xc the dependencies of C1 and α on x have to
be taken into account. From our calculations for low x we
found that |C1| ≈ 0.2117−0.5750x and α ≈ 1.802−8.021x.
Substituting these values into equation (9) we find that C
vanishes at xc ≈ 0.02. Thus, at T = 0 the infinite 2D crys-
tal is in the state with long-range antiferromagnetic order
for x < xc and in the paramagnetic state for x > xc.

Fig. 10. The imaginary part of the spin susceptibility for k =
(π, π). Curves show calculated results for T = 0.02t ≈ 116 K,
x = 0.043 (a) and 0.08 (b). Squares are experimental results
obtained in normal-state YBa2Cu3O7−y at T = 100 K for y =
0.5 (a) and 0.17 (b) [34].

In the considered finite lattice the correlation length
is limited by the size of the lattice. The spin correlations
Cmn = 〈sz

l s
z
0〉, l = (m, n) calculated from the obtained

spin spectral function with the use of equation (8) are
shown in Figure 9. For large enough x and T the correla-
tions decay exponentially with distance in the considered
finite lattice. As mentioned, the method used has no pre-
set magnetic ordering. The character of the ordering is de-
termined in the course of the self-consistent calculations.
The magnetic susceptibility obtained in these calculations
is strongly peaked at the antiferromagnetic wave vector
for low frequencies. No indications of incommensurability,
which can be related to stripes or other types of phase
separation, are observed in the susceptibility. Conceivably
such phase separations are not connected with the strong
electron correlations described by the t-J model.

The magnetic susceptibility is connected with the spin
Green’s function (2) by the relation

χz(kω) = −4µ2
BD(kω),

where µB is the Bohr magneton. Experiments on inelas-
tic neutron scattering give information on the suscep-
tibility which can be directly compared with the cal-
culated results. Such comparison with the results mea-
sured in normal-state YBa2Cu3O7−y [34] is carried out
in Figure 10. YBa2Cu3O7−y is a bilayer crystal and the
symmetry allows one to divide the susceptibility into
odd and even parts. For the antiferromagnetic intrabi-
layer coupling the odd part can be compared with the
calculated results. The oxygen deficiencies y = 0.5 and
0.17 in the experimental data in Figure 10 correspond
to the hole concentrations x ≈ 0.05 and 0.11, respec-
tively [35]. As seen from Figure 10, the calculated data
reproduce correctly the frequency dependence of the sus-
ceptibility, the values of the frequency for which Imχ(π, π)
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Fig. 11. The local spin susceptibility. The experimental re-
sults [34] in YBa2Cu3O6.5 for ω = 25 meV are shown by filled
squares. Our calculated data for x = 0.05 and ω = 22.5 meV
are displayed by open squares.

reaches maximum and their evolution with doping. The in-
crease of the frequency of the maximum with x reflects the
respective growth of the spin gap (see Fig. 6). In absolute
units the calculated maxima of Imχ(π, π) are 1.5−2 times
larger than the experimental values which is connected
with some difference in decay widths of spin excitations.

The temperature variations of the experimental and
calculated susceptibilities are compared in Figure 11. This
figure demonstrates the imaginary part of the local spin
susceptibility which is defined as

ImχL(ω) = N−1
∑
k

Imχ(kω).

As seen from the figure, the calculated temperature vari-
ation of the susceptibility is also in good agreement with
experiment.

The calculated temperature and concentration depen-
dencies of the uniform static spin susceptibility,

χ0 = χ(k → 0, ω = 0) = 4µ2
BT−1

∑
n

〈sz
nsz

0〉 ,

are shown in Figure 12. The values lie in the range
2–2.6 eV−1 which is close to the values 1.9–2.6 eV−1 ob-
tained for YBa2Cu3O7−y [36]. Close values of χ0 were also
obtained by the exact diagonalization of small clusters [5].
The temperature dependence of χ0 has a maximum and
the temperature of the maximum Tm grows with decreas-
ing x. Analogous behavior is observed in cuprates for large
enough x [37–40]. In Figure 12a Tm ≈ 600 K which is
close to the value observed in La2−xSrxCuO4 for compa-
rable hole concentrations [37]. As known, in the undoped
antiferromagnet Tm ≈ J [41]. On the high-temperature
side χ0(T ) tends to the Curie-Weiss behavior 1/T .

The decrease of χ0 below Tm is sometimes considered
as the manifestation of the spin gap. In our opinion this

Fig. 12. The uniform static spin susceptibility vs. tempera-
ture (a) and hole concentration for T = 0.02t (b).

statement is incorrect. For moderate x and T the long-
wavelength part of the spin excitation spectrum does not
feel the gap at (π, π). For small but finite values of k
χ(k, 0) ∝ ∫ ∞

−∞ dω′B(kω′)/ω′. As indicated in Section 4,
the function B(kω′) has a maximum which is shifted to
lower frequencies and loses its intensity with increasing
temperature for such wave vectors. In the above integral
the maximum is superimposed with the decreasing func-
tion 1/ω′ which finally leads to the nonmonotonic behavior
of χ0(T ).

As seen from Figure 12a, the two curves for the differ-
ent x are very close in shape and can be superposed by
scaling to the same values of the maximum χ0 and Tm.
Analogous scaling was observed in La2−xSrxCuO4 [37]. As
follows from the above discussion, the source of this scaling
is that holes and temperature fluctuations lead in a sim-
ilar manner to the softening of the maximum in B(kω′)
for long wavelengths.

As in experiment [37,38], the dependence χ0(x) in
Figure 12b has a maximum. However, the calculated value
of the hole concentration which corresponds to the max-
imum is much smaller than the experimental value x ≈
0.25. A possible reason for this discrepancy is the approx-
imation used for calculating the hole self-energy [11].
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Fig. 13. The temperature dependencies of the spin-lattice
relaxation and spin-echo decay rates at Cu (a–c) and O (d)
sites. Open circles with right axes represent experimental re-
sults, filled circles with left axes are our calculations. (a, c, d)
Calculations for H‖c and x = 0.12, measurements [39,43] in
YBa2Cu3O6.63 (x ≈ 0.1 [35]). (b) Calculations for nonori-
ented configuration with x = 0.043, measurements [44] in
La1.96Sr0.04CuO4.

The spin-lattice relaxation and spin-echo decay rates
were calculated with the use of the equations [42]

1
αT1β T

=
1

2µ2
BN

∑
k

αFβ(k)
Im χ(kω)

ω
, ω → 0,

1
(63T2G)2

=
0.69

128µ4
B

{
1
N

∑
k

63F 2
e (k) [Reχ(k0)]2 (10)

−
[

1
N

∑
k

63Fe(k)Re χ(k0)

]2}
,

where the form factors are

63F‖(k) = (A⊥ + 4Bγk)2 ,

63Fe(k) =
(
A‖ + 4Bγk

)2
, (11)

63F⊥(k) =
1
2

[
63F‖(k) +63Fe(k)

]
,

17F‖(k) = 2C2 (1 + γk) .

In the above formulas the hyperfine coupling constants
B = 3.82 × 10−7 eV, A⊥ = 0.84B, A‖ = −4B, and
C = 0.91B [42]. The superscripts α = 63 or 17 indicate
that the respective quantity belongs to the Cu or O site,
respectively. The subscripts ‖ and ⊥ refer to the direc-
tion of the applied static magnetic field H with respect to
the axis c perpendicular to the Cu-O plane. The form fac-
tor 63Fe is the filter for the Cu spin-echo decay time 63T2G.
Due to the different momentum dependencies of the form
factors (11) measurements of the spin-lattice and spin-
echo decay rates allow one to extract the information on
the low-frequency susceptibility in different regions of the
Brillouin zone.

Our calculated results are compared with the respec-
tive experimental data in Figure 13. The calculations re-
produce satisfactorily the main peculiarities of the tem-
perature dependencies of the spin-lattice relaxation and
spin-echo decay rates. The growth of (63T1 T )−1 with de-
creasing x is connected with the increase of the spectral
intensity of spin excitations near (π, π) which make the
main contribution to this rate. For the same hole con-
centration (63T1 T )−1 is one order of magnitude larger
than (17T1 T )−1. This is a consequence of the fact that
Im χ is strongly peaked near (π, π) and the momentum
dependencies of the form factors (11) [42]. The calculated
spin-lattice relaxation rates are smaller than the experi-
mental values due to the approximation made in the cal-
culation of D(kω) which somewhat underestimates Imχ
at low frequencies.

For moderate x with increasing T the low-frequency
region of Imχ(k ≈ Q), Q = (π, π) first grows due to
the temperature broadening of the maximum in its fre-
quency dependence and then decreases due to the tem-
perature growth of the spin gap (see Fig. 6 and the
related discussion). This nonmonotonic behavior of the
susceptibility shows up in the spin-lattice relaxation rate
at Cu in Figure 13a. The temperature variations of Imχ
and (63T1 T )−1 can be related with the temperature be-
havior of the magnetic correlation length. As can be seen
in Figure 14, for moderate x and low T the magnitude
of the spin gap is determined by the hole concentration
and does not depend on T . This temperature range cor-
responds to the growth stage in Figure 13a. As follows
from equation (8), the independence of the gap from T
means that in this temperature range ξ does not de-
pend on temperature either which is a distinctive feature
of the quantum disordered regime [42,45]. For tempera-
tures above the maximum of (63T1 T )−1 we found that
63T1 T/63T2G ≈ const. (see Figs. 13a and c). As seen in
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Fig. 14. The temperature dependency of
√

∆ ∝ ξ−1 for
x = 0.12.

Figure 14, in this temperature range ξ−1 ∝ √
∆ varies lin-

early with T . Both these facts indicate that in the men-
tioned temperature range the crystal is in the quantum
critical z = 1 regime. These conclusions are consistent
with the phenomenological treatment of experiment in
YBa2Cu3O7−y carried out in reference [42]. The tempera-
ture of the maximum in Figure 13a is close to the param-
eter T∗ of that work, the temperature which separates the
quantum disordered and quantum critical z = 1 regimes.

For small hole concentrations the temperature range
in which holes determine the correlation length is ab-
sent or very small. In these conditions the spin gap grows
starting from low temperatures and (63T1 T )−1 decreases
monotonously, as shown in Figure 13b.

Due to the form factor 17F‖(k), equation (11), the
momentum region near (π, π) does not contribute to
(17T1 T )−1. As indicated in Section 4, there is a cardi-
nal difference between the behavior of Im χ for k ≈ Q
and away from (π, π). Due to the spin gap in the former
case the frequency of the maximum in Imχ(ω) increases
with temperature, while in the latter case it decreases.
This frequency softening leads to the growth of the low-
frequency Im χ and (17T1 T )−1 at low T and their satu-
ration for higher temperatures. Analogous behavior is ob-
served in experiment [43], as seen in Figure 13d. Thus, the
temperature and concentration variations of the spin ex-
citation spectrum in the t-J model put forward the simple
explanations for the behavior of the spin-lattice relaxation
and spin-echo decay rates observed in cuprates.

6 Concluding remarks

In this work we applied Mori’s projection operator tech-
nique and the decoupling of the many-particle Green’s
functions for obtaining the closed set of self-energy equa-
tions which describes energy and magnetic properties of
the t-J model of the Cu-O planes in perovskite high-Tc su-

perconductors. The equations retain the rotation symme-
try of spin components and zero site magnetization in the
paramagnetic state which is set for T > 0 or x > xc ≈ 0.02
in the case T = 0 in an infinite crystal.

For the parameters of cuprates in the cases of low and
moderate doping this self-consistently calculated solution
of the equations is homogeneous. This result indicates that
phase separations are not related to strong electron cor-
relations described by the model.

A number of unusual spectral and magnetic properties
of cuprate perovskites is satisfactorily reproduced by the
calculations. Among these properties are the extended van
Hove singularities around (0, π) and (π, 0). Due to strong
electron correlations these singularities persist near the
Fermi level in a wide range of hole concentrations which
has to play an essential role in the superconductivity of
cuprates.

The pseudogap in the calculated hole spectrum has the
same symmetry and is close in magnitude to the pseudo-
gap observed in photoemission of these crystals. As in ex-
periment, the calculated pseudogap disappears when the
hole concentration approaches the optimal doping. The
existence of two maxima with similar dispersions in the
photoemission spectrum of lightly doped Ca2CuO2Cl2 is
related to hole vibronic states in the region of the dis-
turbed antiferromagnetic order.

In the considered model the concentration dependence
of the magnetic correlation length is the same as that ob-
served in La2−xSrxCuO4. As indicated, in contrast to this
crystal, the model does not show low-frequency incom-
mensurate spin fluctuations for the considered parameters.

In other respects the calculated magnetic susceptibility
is close to that derived from experiments. The results of
the calculations offer explanations for the observed scaling
of the static uniform susceptibility and for the changes
in the spin-lattice relaxation and spin-echo decay rates
in terms of the temperature and doping variations in the
spin excitation spectrum. The scaling is related to the fact
that holes and temperature fluctuations lead in a similar
manner to the softening of the maxima in the spin spectral
function for long wavelengths. This softening leads to the
monotonic increase of the spin-lattice relaxation rate at O.

Contrastingly, due to the spin gap the frequencies of
the maxima in the spin spectral function for momenta
near (π, π) grow with temperature and hole concentration.
This region of momenta makes the main contribution to
the spin-lattice relaxation rate at Cu. For low hole concen-
trations the growth of the frequencies of the maxima leads
to the monotonic decrease of the rate. For moderate con-
centrations two temperature regions may be distinguished.
In the low-temperature region the gap magnitude and the
correlation length depend only weakly on temperature.
In this region the spin-lattice relaxation rate at Cu grows.
The behavior of these parameters in the high-temperature
region is the same as for low hole concentrations.

This work was partially supported by the ESF grant No. 4022
and by DFG.



214 The European Physical Journal B

References

1. P.W. Anderson, Science 235, 1196 (1987)
2. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)
3. Yu.A. Izyumov, Usp. Fiz. Nauk 167, 465 (1997) [Phys.-

Usp. (Russia) 40, 445 (1997)]; E. Dagotto, Rev. Mod.
Phys. 66, 763 (1994)

4. E. Dagotto, R. Joynt, A. Moreo, S. Bacci, E. Gagliano,
Phys. Rev. B 41, 9049 (1990)
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